Title: Polish Epigraphical Mission in the Tomb of Ramesses VI (KV 9) in the Valley of the Kings in 2010

Author(s): Adam Łukaszewicz
Appendix by: Wiesław Małkowski, Miron Bogacki, Jakub Kaniszewski

Journal: Polish Archaeology in the Mediterranean 22 (Research 2010)
Year: 2013
Pages: 161-170
ISSN: 1234–5415 (Print), ISSN 2083–537X (Online)
Publisher: Polish Centre of Mediterranean Archaeology, University of Warsaw (PCMA UW), Wydawnictwa Uniwersytetu Warszawskiego (WUW)
www.pcma.uw.edu.pl - www.wuw.pl

Abstract: Earlier surveys in the tomb Ramesses VI in the Valley of the Kings contributed to the study of numerous graffiti left by Greek tourists of the Ptolemaic and Roman periods. The present epigraphical mission aims at producing a complete and detailed photographic documentation of the graffiti in the context of the interior of the tomb. In 2010, the mission progressed with the task of completing the necessary documentation, for processing a three-dimensional spatial information system for the inscribed space.

Keywords: KV 9, Valley of the Kings, orthophotomaps, tachymetry, graffiti

Revised: Author added on pages 161 and 165 (title/author) and in the captions of Figures 5 and 6 on page 167; additional author’s name and address added in credentials on page 170
POLISH EPIGRAPHICAL MISSION
IN THE TOMB OF RAMESSES VI (KV 9)
IN THE VALLEY OF THE KINGS IN 2010

Adam Łukaszewicz

with appendix by Wiesław Małkowski, Miron Bogacki, and Jakub Kaniszewski

1,2,3 Institute of Archaeology, University of Warsaw, 4 independent

Abstract: Earlier surveys in the tomb Ramesses VI in the Valley of the Kings contributed to the study of numerous graffiti left by Greek tourists of the Ptolemaic and Roman periods. The present epigraphical mission aims at producing a complete and detailed photographic documentation of the graffiti in the context of the interior of the tomb. In 2010, the mission progressed with the task of completing the necessary documentation, for processing a three-dimensional spatial information system for the inscribed space.

Keywords: KV 9, Valley of the Kings, orthophotomaps, tachymetry, graffiti

The overall examination of the epigraphic material from the tomb has been accompanied by an intensive program of measurements and photographic documentation of the graffiti, which is designed to facilitate the reading and interpretation of the inscriptions. The choice of documentation methods in places like a rock-cut tomb with a regular flow of tourist visitors must be cost- and time-efficient simultaneously, while interfering as little as possible with daily sightseeing routines. The following detailed description of the measurement and documentation methodology is given in order to share ideas as to how quality results can be achieved with low-cost and easily available methods.
Interest has focused so far on graffiti belonging chiefly to the Roman period and written in Greek by visitors from diverse parts of Egypt and the Mediterranean. Rare graffiti in Latin, Demotic and Coptic accompanied the majority of inscriptions in Greek, which was the international language of the time. Graffiti occur in substantial numbers on the tomb walls regardless of whether they had been decorated or not. They are the most frequent in the upper part of the tomb and cover virtually the entire wall space in the sections of the corridor near the entrance. For the most part a sharp tool was used to scratch them in the plaster. In the lower part of the tomb and in the pillared hall, the graffiti are concentrated in a zone corresponding approximately to the modern walking level. In the lower corridors and in the burial chamber there are some graffiti painted in red. A considerable number of graffiti in the whole tomb are written in black ink.

A diversity of graffiti patterns has been identified. Most graffiti contain only the name of the visitor, many mention the visitor’s function or origin. There are expressions of admiration for the beauty of the tomb or words indicating the religious character of the visit (proskynema). There

Fig. 1. A series of graffiti from the Roman period, including the inscription of a comes of Thebaid of the 4th century AD

(All photos M. Bogacki)

Team

Date of work: 2–16 March 2010

Director: Prof. Adam Łukaszewicz (Institute of Archaeology, University of Warsaw)

SCA representative: Wadia Fawzy Shehata

Team: Miron Bogacki (Institute of Archaeology, University of Warsaw), Jakub Kaniszewski (independent), Piotr Czerkwiński (PhD Candidate, Institute of Archaeology, University of Warsaw), Wiesław Małkowski (Institute of Archaeology, University of Warsaw)

Student-trainee: Rozalia Tybulewicz (Institute of Archaeology, University of Warsaw)

Acknowledgments

We are grateful to the Supreme Council of Antiquities and to the Archaeological Authorities of Luxor, of the West Bank and of the Valley of the Kings for permission to carry out the work and for their helpful stance.

162

PAM 22, Research 2010
are even longer texts, including pieces of poetry or records of other tombs and curiosities visited on the West Bank.

Explicit dates are rare, but it is hoped that the date of some of the graffiti can be established based on the palaeography to some extent, but primarily on the data provided by the prosopography. The timespan covered by the graffiti appears to extend from the 3rd century BC to the 7th century AD, rather than the 6th century as previously believed.

Visitors to the tomb included philosophers, doctors, high-ranking officials both civilian and military. They considered their visit to the tomb of Ramesses VI important, an expression of piety rather than mere curiosity. The tomb was believed to be that of Memnon erroneously identified with the king represented on the famous colossi of Amenhotep III. The reason for that error was not only the epithet Mery-Amun used by Ramesses VI (an appellation of Ramesside kings confused with the Greek Memnon), but also the presence of signs for Nebmaatre both in the name of Amenhotep III and of Ramesses VI.
DOCUMENTATION METHODS

Photographic documentation is obviously essential and an effort was made to document as many graffiti as possible, especially in the upper part of the tomb. More time is needed to complete a full dossier of the graffiti found in the tomb.

One should note, however, the advantages of photography combined with photogrammetric software and tachymetry for documenting features like tomb KV 9. It should be stated that the effect was comparable to that obtained through three-dimensional scanning, while our method was less expensive and more ergonomic, hardly interfering with the circulation of tourists visiting the tomb.

Additional advantages of this method include simplicity and negligible failure, as well as no cross-border transportation problems. The outcome is positive in most cases, assuring the best results.

Measurements within the tomb were made with an optical device without touching the walls. Digital processing of the data

Fig. 3. Inscription of one Nemesas (Roman period)
combined with photographic documentation will locate individual graffiti precisely within the tomb. The end result will be a map of the graffiti found on the walls.

A study of the measurements taken this season should help to establish the walking level within the tomb in different periods of its accessibility. Jules Baillet’s 1926 edition and commentary on research carried out in the late 19th and early 20th century is in need of revision and updating.

APPENDIX
THREE-DIMENSIONAL SPATIAL INFORMATION SYSTEM FOR THE GRAFFITI INSIDE THE TOMB OF RAMESSES VI (KV 9) IN THE VALLEY OF THE KINGS

Wiesław Małkowski,¹ Miron Bogacki² and Jakub Kaniszewski³
¹,² Institute of Archaeology, University of Warsaw, ³ independent

1. TACHYMETRIC MEASUREMENTS

A Leica TCR407 Power electronic total station was used to take measurements inside the tomb of Ramesses VI in the Valley of the Kings, enabling a noninvasive reflectorless measuring of points with an electronic distance meter (EDM). The instrument uses a visible red laser (wavelength 0.670 mm) working in a 100 MHz 1.5m frequency. The visible laser spot size does not exceed 5 mm in short-distance measurements (10 m) aimed at angles of up to 45 degrees from the perpendicular to the wall. Accuracy according to technical specifications of the instrument is 3mm + 2ppm (distance), 7 " = 2mgon (read angles), instrument leveling precision 2 " = 0.7 mgon. The dual axis oil compensator was activated for measuring, correcting the tilt of the instrument in the range of ± 4 ' (0.07 gon).

Reference points inside the tomb were based on a linear point set inventoried by the tachymetric method using a mirror GMP111 (constant 17.5 mm) [Fig. 4]. They were stabilized on a wooden floor, parallel to the walls of the tomb, taking into account that the collapse of the axes of the tomb is not collinear. Height positioning and the planar coordinate system were defined as a local coordinate system. Measurements of slope distances to each point took into account vertical angle values. Polar coordinates were converted into Cartesian coordinates (x, y, h). Cartesian coordinates (x, y, h) were calculated on the basis of all the necessary information: station coordinates and back sight points, height of instrument over the station, height of pole with reflector, values of vertical and horizontal angles and slope distances. The set of points (processed into three-dimensional space) corresponds to real geometry of the measured tomb and is ready for processing as digital data and ultimately for spatial modeling.

All further measurements were performed with reference to these basic points. Data for specific points of tomb geometry were collected for all the recorded rooms:
edges of wall surfaces, irregular elements (curves) and control planes. Sets of recorded data (geodetic observation) were transmitted to a geodetic calculation program.

2. PROCESSING DATA INTO THREE-DIMENSIONAL MODEL

Constructing a spatial model requires a set of points from direct measurement (by the tachymetric method) to be processed into a model mesh. A triangulated irregular network (TIN) is constructed, the vertices of the triangles constituting the measured points [Fig. 5]. Constructing the grid in a 3D Max Studio environment is partly automatic; the grid is optimized and errors reduced by manual selection of grid nodes.

The grid is an essential element of three-dimensional data processing, supporting modeling of edges as well as building faces. It is also the base for modeling surfaces, which operates on the principle of algorithmic distribution of a regular grid mesh that optimizes the three-dimensional surface by smoothing and averaging inheritance-curves. Interpolation of the TIN grid affects the final result, which is a realistic model of the object.

Assuming that all the necessary elements of the model were identified during measurements and documented as nodes of the grid-mesh, one can optimize the process of drafting of surfaces between adjoining irregular triangles in order to avoid artificial breaks of the surface visible to the eye of the observer.

The resultant model is divided into a number of modules representing ele-

Fig. 4. Documentation in progress inside the tomb
ments of the geometry of the feature. In the case of the tomb of Ramesses VI, every wall will be treated as a separate element and placed in a defined coordinate system. This will allow work on the level of the whole model as well as of particular selected elements (i.e., objects). Each module thus has a separate name and a set of characteristics to determine its shape, dimensions and position [Fig. 6].

3. PROCESSING PHOTOGRAPHS INTO CARTOMETRIC IMAGES
Using the wide capabilities of Photogrammetric Image Master Pro software, a properly taken image can be transformed

Fig. 5. Three-dimensional TIN model of the chamber (Processing J. Kaniszewski)

Fig. 6. Spatial model of the geometry of the tomb (Processing J. Kaniszewski)
into distortion-free photo- and orthophotomaps and then recalculated as a three-dimensional surface model based on a TIN grid of triangles. In order for this to be successful, the camera and lenses have to be calibrated so that there are separate profiles for each camera lens; this reduces optical and perspective defects, which are the lot of most photographs. It is crucial to all further processing that the photos be taken with a scale, for example, two points with known distance between them. Calculations are more precise when a grid of control points is established on the photographed surface. In our case, these control points, so called photo-points, were measured by the tachimetric method. Georeferencing for each photograph was based on measurements and coordinate calculation of the photo-points.

Measured photo-points were an integral part of the recorded graffiti, e.g., edges of letters or other distinctive features. The number of control points for each photographed graffiti ranged from a few to several units (depending on the dimensions of the scene with the inscription and the state of its preservation). Photo-points were measured in an irregular grid.

The photographed graffiti were successively transformed to prepare a model grid (DEM Digital Elevation Model) and orthophotomaps. The final effect – an example of the effect can be seen in Fig. 7 – depends on a number of factors. First of all, each pair of images should cover from 70% to 90% of the scene (=graffiti) in question, this being a prerequisite condition for constructing stereo-pairs which permit surfaces to be developed into three dimensional space based on stereoscopic calculation. In practice, this requires the software operator to indicate each photo-point visible on a raster/bitmap image and match it with appropriate, measured coordinates (X, Y, Z). The pixel bitmap image is then transformed by automatic calculation into a defined system of coordinates (X, Y, Z).

Fig. 7. Photogrammetric 3D model (DEM) of part of Room B
The system generates stereo-pairs allowing a three-dimensional digital model of the surface to be created. Areas selected by the user were processed into a triangulated irregular network, filled with a textured surface, and finally formed as a photorealistic three-dimensional surface.

Grids made for all documented areas can be analyzed independently or in the context of another model located in the same coordinate system. The idea ultimately is to combine the data in one file, presenting a larger test area. Elements important from the epigraphic point of view can be separated out in the course of the processing. These can then be selected, allowing further work on each “graffiti area” using edition and measuring tools.

Flat photomaps documenting scenes with graffiti from the walls of the tomb were also made and saved in GeoTiff format, ready to use on a GIS (Geographic Information System) platform using georeferenced data on file.

The advantage of working with a total station inside the tomb is that it does not interfere with the regular tourist cycle. Measurements were taken during tourist opening hours with large numbers of visitors streaming through the tomb while the work was in progress.

4. METHOD ASSESSMENT

The method of photography combined with photogrammetric software and tachimetry used in the circumstances of the tomb of Ramesses VI proved to have several advantages. The effect was similar or even better than 3D scanning while using a cheaper and more ergonomic method and not interfering with tourist flow inside the tomb. Compared to the three-dimensional scanner, which could ideally be used for the task at hand, but which collects data automatically without selection, the method described above gives the opportunity to collect only characteristic points, required to create the geometry of a measured feature. A relatively limited number of points (about 5000), measured within a couple of days, sufficed in this case to achieve a result similar in effect to the process of scanning and processing data with a scanner. Moreover, photos are better documentation of graffiti than the colored cloudpoint from a scanner, especially when using professional reflex cameras and adequate lighting for good photography. They hold more graphic information, are scalable and after transformation to orthophotomaps with coordinates can provide useful and highly accurate data. The same technique of taking pictures is useful for small areas 5–50 cm and for bigger areas 1–5 m. In the documentation process, taking pictures is not as time-consuming as their processing in photogrammetric software. Nearly all the graffiti from the tomb were photographed within two weeks of work in the tomb. Software processing of photographic data will take months, but it can be done locally in Poland.

In summary, this combination of photogrammetric, geodesic and 3D modeling methods gives researchers the following:
- a full 3D model of the tomb created from geodesic measurements;
- two-dimensional plans of all parts of the tomb extracted from the 3D model;
- 3D models of paintings with graffiti created by photogrammetric methods;
- detailed orthophotographs of graffiti scaled and localized in space with a high degree of accuracy.
REFERENCES

Łukaszewicz, A.
2000a Valley of the Kings. Epigraphical survey in the Tomb of Ramesses VI (KV 9), PAM 11 (Reports 1999), 191–194
2013a Ramesses VI. A pharaoh and his visitors [in:] Drevene Pričernomor’è X, Odessa: Ministerstvo Obrazovanija i Nauki, Molodeži i Sporta Ukrainy, 401–406

Theban Mapping Project online
POLISH EPIGRAPHICAL MISSION IN THE TOMB OF RAMESSES VI (KV 9) IN THE VALLEY OF THE KINGS IN 2010

Adam Łukaszewicz¹

with appendix by Wiesław Małkowski, ² Miron Bogacki³

¹,²,³ Institute of Archaeology, University of Warsaw

Abstract: Earlier surveys in the tomb Ramesses VI in the Valley of the Kings contributed to the study of numerous graffiti left by Greek tourists of the Ptolemaic and Roman periods. The present epigraphical mission aims at producing a complete and detailed photographic documentation of the graffiti in the context of the interior of the tomb. In 2010, the mission progressed with the task of completing the necessary documentation, for processing a three-dimensional spatial information system for the inscribed space.

Keywords: KV 9, Valley of the Kings, orthophotomaps, tachymetry, graffiti

The overall examination of the epigraphic material from the tomb has been accompanied by an intensive program of measurements and photographic documentation of the graffiti, which is designed to facilitate the reading and interpretation of the inscriptions. The choice of documentation methods in places like a rock-cut tomb with a regular flow of tourist visitors must be cost- and time-efficient simultaneously, while interfering as little as possible with daily sightseeing routines. The following detailed description of the measurement and documentation methodology is given in order to share ideas as to how quality results can be achieved with low-cost and easily available methods.
Interest has focused so far on graffiti belonging chiefly to the Roman period and written in Greek by visitors from diverse parts of Egypt and the Mediterranean. Rare graffiti in Latin, Demotic and Coptic accompanied the majority of inscriptions in Greek, which was the international language of the time. Graffiti occur in substantial numbers on the tomb walls regardless of whether they had been decorated or not. They are the most frequent in the upper part of the tomb and cover virtually the entire wall space in the sections of the corridor near the entrance. For the most part a sharp tool was used to scratch them in the plaster. In the lower part of the tomb and in the pillared hall, the graffiti are concentrated in a zone corresponding approximately to the modern walking level. In the lower corridors and in the burial chamber there are some graffiti painted in red. A considerable number of graffiti in the whole tomb are written in black ink.

A diversity of graffiti patterns has been identified. Most graffiti contain only the name of the visitor, many mention the visitor’s function or origin. There are expressions of admiration for the beauty of the tomb or words indicating the religious character of the visit (proskynema).

Team

Dates of work: 2–16 March 2010

Director: Prof. Adam Łukaszewicz (Institute of Archaeology, University of Warsaw)

SCA representative: Wadia Fawzy Shehata

Team: Miron Bogacki (Institute of Archaeology, University of Warsaw), Jakub Kaniszewski (independent), Piotr Czerkwiński (PhD Candidate, Institute of Archaeology, University of Warsaw), Wiesław Małkowski (Institute of Archaeology, University of Warsaw)

Student-trainee: Rozalia Tybulewicz (Institute of Archaeology, University of Warsaw)

Acknowledgments

We are grateful to the Supreme Council of Antiquities and to the Archaeological Authorities of Luxor, of the West Bank and of the Valley of the Kings for permission to carry out the work and for their helpful stance.
are even longer texts, including pieces of poetry or records of other tombs and curiosities visited on the West Bank.

Explicit dates are rare, but it is hoped that the date of some of the graffiti can be established based on the palaeography to some extent, but primarily on the data provided by the prosopography. The time span covered by the graffiti appears to extend from the 3rd century BC to the 7th century AD, rather than the 6th century as previously believed.

Visitors to the tomb included philosophers, doctors, high-ranking officials both civilian and military. They considered their visit to the tomb of Ramesses VI important, an expression of piety rather than mere curiosity. The tomb was believed to be that of Memnon erroneously identified with the king represented on the famous colossi of Amenhotep III. The reason for that error was not only the epithet Mery-Amun used by Ramesses VI (an appellation of Ramesside kings confused with the Greek Memnon), but also the presence of signs for Nebmaatre both in the name of Amenhotep III and of Ramesses VI.

Fig. 2. Graffiti of the Roman period between the figures of Isis and Nephthys
DOCUMENTATION METHODS

Photographic documentation is obviously essential and an effort was made to document as many graffiti as possible, especially in the upper part of the tomb. More time is needed to complete a full dossier of the graffiti found in the tomb.

One should note, however, the advantages of photography combined with photogrammetric software and tachymetry for documenting features like tomb KV 9. It should be stated that the effect was comparable to that obtained through three-dimensional scanning, while our method was less expensive and more ergonomic, hardly interfering with the circulation of tourists visiting the tomb.

Additional advantages of this method include simplicity and negligible failure, as well as no cross-border transportation problems. The outcome is positive in most cases, assuring the best results.

Measurements within the tomb were made with an optical device without touching the walls. Digital processing of the data

Fig. 3. Inscription of one Nemesas (Roman period)
combined with photographic documentation will locate individual graffiti precisely within the tomb. The end result will be a map of the graffiti found on the walls.

A study of the measurements taken this season should help to establish the walking level within the tomb in different periods of its accessibility. Jules Baillet’s 1926 edition and commentary on research carried out in the late 19th and early 20th century is in need of revision and updating.

APPENDIX

THREE-DIMENSIONAL SPATIAL INFORMATION SYSTEM FOR THE GRAFFITI INSIDE THE TOMB OF RAMESSES VI (KV 9) IN THE VALLEY OF THE KINGS

Wiesław Małkowski,¹ Miron Bogacki²

¹,² Institute of Archaeology, University of Warsaw

1. TACHYMETRIC MEASUREMENTS

A Leica TCR407 Power electronic total station was used to take measurements inside the tomb of Ramesses VI in the Valley of the Kings, enabling a noninvasive reflectorless measuring of points with an electronic distance meter (EDM). The instrument uses a visible red laser (wavelength 0.670 mm) working in a 100 MHz 1.5m frequency. The visible laser spot size does not exceed 5 mm in short-distance measurements (10 m) aimed at angles of up to 45 degrees from the perpendicular to the wall. Accuracy according to technical specifications of the instrument is 3mm + 2ppm (distance), \(7" = 2\text{mgon} \) (read angles), instrument leveling precision \(2" = 0.7 \text{mgon} \). The dual axis oil compensator was activated for measuring, correcting the tilt of the instrument in the range of \(\pm 4\" \) (0.07 gon).

Reference points inside the tomb were based on a linear point set inventoried by the tachymetric method using a mirror GMP111 (constant 17.5 mm) [Fig. 4]. They were stabilized on a wooden floor, parallel to the walls of the tomb, taking into account that the collapse of the axes of the tomb is not collinear. Height positioning and the planar coordinate system were defined as a local coordinate system. Measurements of slope distances to each point took into account vertical angle values. Polar coordinates were converted into Cartesian coordinates \((x, y, h)\). Cartesian coordinates \((x, y, h)\) were calculated on the basis of all the necessary information: station coordinates and back sight points, height of instrument over the station, height of pole with reflector, values of vertical and horizontal angles and slope distances. The set of points (processed into three-dimensional space) corresponds to real geometry of the measured tomb and is ready for processing as digital data and ultimately for spatial modeling.

All further measurements were performed with reference to these basic points. Data for specific points of tomb geometry were collected for all the recorded rooms:
edges of wall surfaces, irregular elements (curves) and control planes. Sets of recorded data (geodetic observation) were transmitted to a geodetic calculation program.

2. PROCESSING DATA INTO THREE-DIMENSIONAL MODEL

Constructing a spatial model requires a set of points from direct measurement (by the tachymetric method) to be processed into a model mesh. A triangulated irregular network (TIN) is constructed, the vertices of the triangles constituting the measured points [Fig. 5]. Constructing the grid in a 3D Max Studio environment is partly automatic; the grid is optimized and errors reduced by manual selection of grid nodes.

The grid is an essential element of three-dimensional data processing, supporting modeling of edges as well as building faces. It is also the base for modeling surfaces, which operates on the principle of algorithmic distribution of a regular grid mesh that optimizes the three dimensional surface by smoothing and averaging inheritance-curves. Interpolation of the TIN grid affects the final result, which is a realistic model of the object.

Assuming that all the necessary elements of the model were identified during measurements and documented as nodes of the grid-mesh, one can optimize the process of drafting of surfaces between adjoining irregular triangles in order to avoid artificial breaks of the surface visible to the eye of the observer.

The resultant model is divided into a number of modules representing ele-

Fig. 4. Documentation in progress inside the tomb
ments of the geometry of the feature. In the case of the tomb of Ramesses VI, every wall will be treated as a separate element and placed in a defined coordinate system. This will allow work on the level of the whole model as well as of particular selected elements (i.e., objects). Each module thus has a separate name and a set of characteristics to determine its shape, dimensions and position [Fig. 6].

3. PROCESSING PHOTOGRAPHS INTO CARTOMETRIC IMAGES
Using the wide capabilities of Photogrammetric Image Master Pro software, a properly taken image can be transformed

Fig. 5. Three-dimensional TIN model of the tomb chamber

Fig. 6. Spatial model of the geometry of the tomb
into distortion-free photo- and orthophotomaps and then recalculated as a threedimensional surface model based on a TIN grid of triangles. In order for this to be successful, the camera and lenses have to be calibrated so that there are separate profiles for each camera lens; this reduces optical and perspective defects, which are the lot of most photographs. It is crucial to all further processing that the photos be taken with a scale, for example, two points with known distance between them. Calculations are more precise when a grid of control points is established on the photographed surface. In our case, these control points, so called photo-points, were measured by the tachimetric method. Georeferencing for each photograph was based on measurements and coordinate calculation of the photo-points.

Measured photo-points were an integral part of the recorded graffiti, e.g., edges of letters or other distinctive features. The number of control points for each photographed graffiti ranged from a few to several units (depending on the dimensions of the scene with the inscription and the state of its preservation). Photo-points were measured in an irregular grid.

The photographed graffiti were successively transformed to prepare a model grid (DEM Digital Elevation Model) and orthophotomaps. The final effect – an example of the effect can be seen in Fig. 7 – depends on a number of factors. First of all, each pair of images should cover from 70% to 90% of the scene (=graffiti) in question, this being a prerequisite condition for constructing stereo-pairs which permit surfaces to be developed into three-dimensional space based on stereoscopic calculation. In practice, this requires the software operator to indicate each photo-point visible on a raster/bitmap image and match it with appropriate, measured coordinates (X, Y, Z). The pixel bitmap image is then transformed by automatic calculation into a defined system of coordinates (X, Y, Z).

![Fig. 7. Photogrammetric 3D model (DEM) of part of Room B](image-url)

- Wieslaw Malkowski, Miron Bogacki
- EGYPT
The system generates stereo-pairs allowing a three-dimensional digital model of the surface to be created. Areas selected by the user were processed into a triangulated irregular network, filled with a textured surface, and finally formed as a photorealistic three-dimensional surface.

Grids made for all documented areas can be analyzed independently or in the context of another model located in the same coordinate system. The idea ultimately is to combine the data in one file, presenting a larger test area. Elements important from the epigraphic point of view can be separated out in the course of the processing. These can then be selected, allowing further work on each “graffiti area” using edition and measuring tools.

Flat photomaps documenting scenes with graffiti from the walls of the tomb were also made and saved in GeoTiff format, ready to use on a GIS (Geographic Information System) platform using georeferenced data on file.

The advantage of working with a total station inside the tomb is that it does not interfere with the regular tourist cycle. Measurements were taken during tourist opening hours with large numbers of visitors streaming through the tomb while the work was in progress.

4. METHOD ASSESSMENT

The method of photography combined with photogrammetric software and tachimetre used in the circumstances of the tomb of Ramesses VI proved to have several advantages. The effect was similar or even better than 3D scanning while using a cheaper and more ergonomic method and not interfering with tourist flow inside the tomb. Compared to the three-dimensional scanner, which could ideally be used for the task at hand, but which collects data automatically without selection, the method described above gives the opportunity to collect only characteristic points, required to create the geometry of a measured feature. A relatively limited number of points (about 5000), measured within a couple of days, sufficed in this case to achieve a result similar in effect to the process of scanning and processing data with a scanner. Moreover, photos are better documentation of graffiti than the colored cloudpoint from a scanner, especially when using professional reflex cameras and adequate lighting for good photography. They hold more graphic information, are scalable and after transformation to orthophotomaps with coordinates can provide useful and highly accurate data. The same technique of taking pictures is useful for small areas 5–50 cm and for bigger areas 1–5 m. In the documentation process, taking pictures is not as time-consuming as their processing in photogrammetric software. Nearly all the graffiti from the tomb were photographed within two weeks of work in the tomb. Software processing of photographic data will take months, but it can be done locally in Poland.

In summary, this combination of photogrammetric, geodesic and 3D modeling methods gives researchers the following:
– a full 3D model of the tomb created from geodesic measurements;
– two-dimensional plans of all parts of the tomb extracted from the 3D model;
– 3D models of paintings with graffiti created by photogrammetric methods;
– detailed orthophotographs of graffiti scaled and localized in space with a high degree of accuracy.
REFERENCES

Łukaszewicz, A.
2000a Valley of the Kings. Epigraphical survey in the Tomb of Ramesses VI (KV 9), PAM 11 (Reports 1999), 191–194
2013a Ramesses VI. A pharaoh and his visitors [in:] Drevnee Pričernomor’ë X. Odessa: Ministerstvo Obrazovaniia i Nauki, Molodeži i Sporta Ukrainy, 401–406
Theban Mapping Project online
CONTENTS

Acknowledgments ... 10

Obituaries
Michał Neska .. 11
Piotr Parandowski .. 13
Adam Stefanowicz .. 15
Zygmunt Wysocki .. 17

Abbreviations and Standard References .. 19

PAM REPORTS

PCMA field missions and projects in 2010 (with map) .. 23

EGYPT

ALEXANDRIA
Excavations and preservation work on Kom el-Dikka.
Preliminary report 2009/2010
Grzegorz Majcherek ... 33

MAREA
Eleventh season of excavations at Marea (2010)
Krzysztof Babraj, Hanna Szymańska, Anna Drzymuchowska, Nina Willburger ... 55

Appendix: The harbor jetties of Marea
Krzysztof Babraj .. 67

TELL EL-RETABA

Tell el-Retaba, season 2010
Sławomir Rzepka, Józef Hudec, Łukasz Jarmużek .. 79

Appendix: Tell el-Retaba 2010. Preliminary report on archaeobotanical investigations
Claire Malleson .. 90

Tell el-Retaba, season 2010: Pottery report
Anna Wodzińska .. 96
CONTENTS

TELL EL-MURRA
Tell el-Murra (Northeastern Nile Delta Survey). Season 2010
Mariusz A. Jucha, Katarzyna Błaszczyk, Artur Buszek, Grzegorz Pryc 105

TELL EL-GHABA
Geophysical survey at Tell el-Ghaba, 2010
Tomasz Herbich ... 121

DEIR EL-BAHARI
Zbigniew E. Szafranski ... 131
New stone sculptures of Hatshepsut from Deir el-Bahari
Aliaksei Shukanau .. 152

VALLEY OF THE KINGS
Polish Epigraphical Mission in the Tomb of Ramesses VI (KV 9)
in the Valley of the Kings in 2010
Adam Łukaszewicz .. 161
Appendix: Three-dimensional spatial information system for the graffiti inside the Tomb of Ramesses VI (KV 9) in the Valley of the Kings
Wiesław Małkowski, Miron Bogacki ... 165

SHEIKH ABD EL-GURNA
The hermitage in Sheikh Abd el-Gurna (West Thebes): excavations, studies and conservation in 2009 and 2010/2011
Tomasz Górecki ... 171
Preliminary Remarks on the Architecture of Theban Tomb 1152 at Sheikh Abd el-Gurna
Patryk Chudzik ... 193
The Gurna Manuscripts (hermitage in MMA 1152), conservation report, 2010
Anna Thommée ... 199

BERENIKE
The late Roman harbor temple of Berenike. Results of the 2010 season of excavations
Joanna Rądkowska, Steven E. Sidebotham, Iwona Zych 209

SUDAN
DONGOLA
Archaeozoological research on animal remains from excavations in Dongola (Sudan) in 2010
Marta Osypińska .. 229
The Mosque Building in Old Dongola. Conservation and revitalization project
Artur Obluski, Włodzimierz Godlewski, Wojciech Kołataj, Stanisław Medeksza, Cristobal Calaforra-Rzepka ... 248

BANGANARTI
Banganarti and Selib. Season 2010
Bogdan Żurawski, Tomasz Stepniki, Mariusz Drzewiecki, Tadeusz Badowski, Aneta Cedro, Katarzyna Molga, Katarzyna Solarska, Tomasz Włodarski 273

Appendix: Archaeological research report from Selib 2 (2010 season)
Roksana Hajduga .. 287

The enclosure walls of Banganarti and Selib after the 2010 season
Mariusz Drzewiecki ... 295

FOURTH Cataract
Hagar el-Beida 1. Excavations of the “royal” tumulus (No. 10) in 2010
Marek Chłodnicki, Tomasz Stepniki .. 309

LEBANON
Jiyeh
Preliminary report on the 2010 excavation season at Jiyeh (Porphyreon)
Tomasz Waliszewski, Mariusz Gwiazda ... 321

Fishing gear from Jiyeh (Porphyreon). Preliminary report
Agnieszka Szulc-Kajak ... 334

SYRIA
Palmyra
Remarks on water supply in Palmyra. Results of a survey in 2010
Karol Juchniewicz, Marta Żuchowska .. 341

Tell Arbid
Preliminary results of the fifteenth field season of joint Polish–Syrian explorations on Tell Arbid (2010)
Piotr Bieliński .. 351

Ninevite 5 kitchen from Tell Arbid (Sector W)
Andrzej Reiche, Anna Smogorzewska .. 371
Set of second millennium BC unbaked clay objects from Tell Arbid
Agnieszka Szymczak .. 387

Decorative motifs on Early Incised/Excised Ninevite 5 pottery from Tell Arbid
Cezary Baka, Jacek Hamburg .. 421
Animal bone remains from Tell Arbid (season 2009) —
Archaeozoological analysis
Joanna Piątkowska-Małecka, Anna Smogorzewska ... 439

Tell Arbid. Adam Mickiewicz University excavations in Sector P
(spring season of 2010)
Rafał Koliński ... 451

KUWAIT

AS-SABBIYA

Archaeological survey in the eastern As-Sabbiya
(north coast of Kuwait Bay), seasons 2009–2010
Łukasz Rutkowski ... 479

Tumuli graves and desert wells in the As-Sabbiya. Preliminary excavation report on the spring season in 2010
Łukasz Rutkowski ... 493

Tumulus grave SMQ 49 (As-Sabbiya, Kuwait). Preliminary report on the investigations in 2009–2010
Maciej Makowski ... 518

Andrzej Reiche ... 528

IRAN

KHONE-YE DIV

Barbara Kaim, Mohammad Bakhtiari, Hassan Hashemi ... 543

PAM STUDIES

Pottery from Bahra 1 (Kuwait). New evidence for the presence of Ubaid culture in the Gulf
Anna Smogorzewska .. 555

Ground and pecked stone industry of Bahra 1, an Ubaid-related settlement in Northern Kuwait
Marcin Bialowarczuk .. 569

Shell objects from Tell Rad Shaqrah (Syria)
Dariusz Szędag ... 587
CONTENTS

Anthropomorphic figurines of the second millennium BC from Tell Arbid, preliminary report
Maciej Makowski ... 617

Execution again? Remarks on an Old Kingdom ritual
Teodozja I. Rzeuska .. 627

The Solar Altar in the Hatshepsut temple at Deir el-Bahari
Teresa Dziedzić ... 635

Roman clay lantern from Bijan Island (Iraq)
Maria Krogulska, Iwona Zych .. 651

Archbishop Georgios of Dongola. Socio-political change in the kingdom of Makuria in the second half of the 11th century
Włodzimierz Godlewski .. 663

Medieval transcultural medium: beads and pendants from Makurian and post-Makurian Dongola in Nubia
Joanna Then-Obłuska .. 679

Index of sites ... 721

Guidelines for authors ... 722

PCMA Publications ... 723