Title: Animal bone remains from Tell Arbid (season 2009) — Archaeozoological analysis

Author(s): Joanna Piątkowska-Małecka, Anna Smogorzewska

Journal: Polish Archaeology in the Mediterranean 22 (Research 2010)

Year: 2013

Pages: 439–450

ISSN 1234–5415 (Print), ISSN 2083–537X (Online)

Publisher: Polish Centre of Mediterranean Archaeology, University of Warsaw (PCMA UW), Wydawnictwa Uniwersytetu Warszawskiego (WUW)

www.pcma.uw.edu.pl - www.wuw.pl

Abstract: The paper presents the results of archaeozoological analysis of bone remains from the 2009 season of excavations at Tell Arbid (in northeastern Syria). Animal husbandry proved to have been at the core of the animal economy at the site from the beginning of the 3rd millennium BC through modern times. The chief species at the start were small ruminants (50–80% of bones in the assemblage), supplemented later with pig (10–35%) and cattle (5–20%). Hunting and gathering mollusks were of minor importance. Equids were represented among bone remains from all periods. In the Khabur Ware period there was a shift in the animal economy from a stationary one based mainly on breeding pigs to pastoralism characterized by a growing share of small ruminants.

Keywords: animal economy, caprines, pigs, cattle, Tell Arbid, Syria
ANIMAL BONE REMAINS FROM TELL ARBID (SEASON 2009)
ARCHAEOZOOLOGICAL ANALYSIS

Joanna Piątkowska-Małecka, Anna Smogorzewska
1,2 Institute of Archaeology, University of Warsaw

Abstract: The paper presents the results of archaeozoological analysis of bone remains from the 2009 season of excavations at Tell Arbid (in northeastern Syria). Animal husbandry proved to have been at the core of the animal economy at the site from the beginning of the 3rd millennium BC through modern times. The chief species at the start were small ruminants (50–80% of bones in the assemblage), supplemented later with pig (10–35%) and cattle (5–20%). Hunting and gathering mollusks were of minor importance. Equids were represented among bone remains from all periods. In the Khabur Ware period there was a shift in the animal economy from a stationary one based mainly on breeding pigs to pastoralism characterized by a growing share of small ruminants.

Keywords: animal economy, caprines, pigs, cattle, Tell Arbid, Syria

The examined osteological material comes from a sector of excavations on the southern side of the mound at Tell Arbid, a site in northeastern Syria, with occupation spanning a period from the beginning of the 3rd millennium BC through modern times. The results discussed in this paper are based solely on material excavated in the 2009 season (which was the penultimate season of work at the site so far, and the last one from which the archaeozoological material has been analyzed). The wider range of osteological material involving the results from various areas at the site was the subject of earlier studies (Piątkowska-Małecka, Koliński 2006 and Piątkowska-Małecka, Smogorzewska 2010). The Sector W trench in 2009 covered an area of approximately 300 m² (approximately 0.25% of the main tell) and produced both well dated and mixed layers. Dated layers can be referred to a site periodization, developed on the grounds of excavations carried out by a Polish team from the PCMA since 1996, extending from the Ninevite 5 phase (Period VIIC, corresponding to Early Jezirah [EJ] II in the Syrian Jezirah periodization), through Early Dynastic III (Period VIIB = EJIII) and Akkadian (Period VIIA = EJV), to the Khabur Ware period (Period V = Old Jezirah [EJ] III).

The animal bone material represented all periods, including two transitional phases recognized in the archaeological record: VIIIC/VIIIB corresponding to Early Dynastic III/Ninevite 5 and VIIA/VI corresponding to Akkadian/post-
Akkadian. Material from the Hellenistic period through the Islamic age and modern times was treated as one group (Modern = M) and so were the remains from mixed layers (MIX), which, however, were not included in the archaeozoological analysis except for the main taxa. Bone remains from the Akkadian period were also excluded from the study because of the small sample.

In terms of provenance, the Ninevite 5 period remains from Sector W excavated in 2009 (both the late phase with late excised pottery and the earlier phase with incised and excised pottery) came from architectural vestiges of diverse nature: dwelling rooms and courtyards beside structures related to the so-called Southern Temple (see, e.g., Bieliński 2010: 548–554, 2012: 530–533; 2013 in this volume). Animal bone remains from the EDIII strata came from structures sealing Ninevite 5 remains, whereas most of the material from the Khabur Ware and modern periods was recovered from pits dug into 3rd millennium BC layers.

MATERIAL AND METHODS

2381 mammal bone fragments were found in all layers, together with two bird bone remains and 12 mollusk fragments [Table 1]. The 1272 mammal bone remains that were identified anatomically and by zoological taxa accounted for 53.4% of the entire bone assemblage. The preservation of the material was poor overall, the bones being severely crushed and fragmented.

The identified animal remains were broken down by chronological phases and grouped as follows: bred species (cattle, pig, sheep and goat), equids (without distinguishing between domesticated and wild forms) and other, including wild animals, birds and mollusks. Percentages of particular species were calculated for the bred species.

An anatomical analysis of the bones was performed for species, for which the remains exceeded or equaled 100 items for any given period [Table 2]: pig, sheep and goat remains from the Ninevite 5 period layers and sheep and goat bones from the EDIII period layers. Specific bones were attributed to one of seven skeleton parts: head (skull bones and teeth), trunk (fragments of vertebrae and ribs), proximal parts of the forelimb (scapulae, humeri, radii and ulnae) and hind limb (pelves, femora, tibiae and fibula), distal parts of the forelimb and hind limb (carpal and metacarpal bones, tarsal and metatarsal bones) and digital bones. Percentages of particular bones were calculated and then compared with the model distribution (Lasota-Moskalewska 2008).

The age and sex of the animals was assessed. The age of animals from bred species was reconstructed based on the fusion of long bone bases with shafts (Kolda 1936) and dental development (Lutnicki 1972). Animal sex was identified on the basis of male and female distinguishing features.

To reconstruct animal morphology the bones were measured using the unified Driesch method (von den Driesch 1976) [Table 3].

In the case of cattle, pig and horse remains, osteological measurements of some bones were converted into points using the 100-point scale method (Lasota-Moskalewska 1984; Lasota-Moskalewska
Table 1. Zoological distribution of post-consumption animal bone remains from Tell Arbid (season 2009) by chronological phases

<table>
<thead>
<tr>
<th>ZOOLOGICAL IDENTIFICATION</th>
<th>VIIC</th>
<th>VIIC/B</th>
<th>VIIB</th>
<th>Vilia</th>
<th>Vilia/VI</th>
<th>V</th>
<th>M</th>
<th>MIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>10</td>
<td>7</td>
<td>26</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>(3.2%)</td>
<td>(4.6%)</td>
<td>(12.3%)</td>
<td>(1.7%)</td>
<td>(9.9%)</td>
<td>(21.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pig</td>
<td>113</td>
<td>65</td>
<td>71</td>
<td>6</td>
<td>21</td>
<td>6</td>
<td>7</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>(36.7%)</td>
<td>(43.0%)</td>
<td>(33.5%)</td>
<td>(17.6%)</td>
<td>(7.4%)</td>
<td>(8.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep/Goat</td>
<td>185</td>
<td>79</td>
<td>115</td>
<td>13</td>
<td>96</td>
<td>67</td>
<td>59</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>(60.1%)</td>
<td>(52.3%)</td>
<td>(54.2%)</td>
<td>(80.7%)</td>
<td>(82.7%)</td>
<td>(70.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equid</td>
<td>3</td>
<td>–</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>17</td>
<td>53</td>
<td>4</td>
</tr>
<tr>
<td>Camel</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>Deer</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Bird</td>
<td>1</td>
<td>–</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>17</td>
<td>53</td>
<td>4</td>
</tr>
<tr>
<td>Mollusk</td>
<td>10</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Not identified</td>
<td>223</td>
<td>178</td>
<td>261</td>
<td>8</td>
<td>75</td>
<td>54</td>
<td>142</td>
<td>168</td>
</tr>
</tbody>
</table>

Table 2. Anatomical distribution of sheep, goat and pig bone remains from the Ninevite 5 (VIIC) and EDIII (VIIB) periods

<table>
<thead>
<tr>
<th>CHRONOLOGY</th>
<th>VIIC</th>
<th>MODEL</th>
<th>VIIC</th>
<th>VIIB</th>
<th>MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSTEORELICAL CHARACTERISTIC</td>
<td>PIG</td>
<td>SHEEP/GOAT</td>
<td>SHEEP/GOAT</td>
<td>SHEEP/GOAT</td>
<td>SHEEP/GOAT</td>
</tr>
<tr>
<td>n</td>
<td>%</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Head</td>
<td>62</td>
<td>54.9</td>
<td>20</td>
<td>61</td>
<td>33.0</td>
</tr>
<tr>
<td>Trunk</td>
<td>11</td>
<td>9.7</td>
<td>34</td>
<td>60</td>
<td>32.4</td>
</tr>
<tr>
<td>Forelimb, proximal part</td>
<td>11</td>
<td>9.7</td>
<td>4</td>
<td>23</td>
<td>12.4</td>
</tr>
<tr>
<td>Forelimb, distal part</td>
<td>6</td>
<td>5.3</td>
<td>10</td>
<td>5</td>
<td>2.7</td>
</tr>
<tr>
<td>Hind limb, proximal part</td>
<td>5</td>
<td>4.4</td>
<td>3</td>
<td>22</td>
<td>11.9</td>
</tr>
<tr>
<td>Hind limb, distal part</td>
<td>9</td>
<td>8.0</td>
<td>9</td>
<td>10</td>
<td>5.4</td>
</tr>
<tr>
<td>Digital bones</td>
<td>9</td>
<td>8.0</td>
<td>20</td>
<td>4</td>
<td>2.2</td>
</tr>
<tr>
<td>Total</td>
<td>113</td>
<td>100.0</td>
<td>185</td>
<td>100.0</td>
<td>115</td>
</tr>
</tbody>
</table>
et alii 1987; Kobryń 1989). Pig and sheep withers heights were calculated based on bone length using Teichert’s coefficients, while those of horses were done according to Kiesewalter’s coefficients (von den Driesch, Boessneck 1974) and those of goat according to Shramm’s coefficients (1967). All marks on the bones were also observed and described.

Table 3. Bone dimensions by period and zoological taxa

<table>
<thead>
<tr>
<th>CHRONOLOGY</th>
<th>ZOOLOGICAL IDENTIFICATION</th>
<th>OSTEOLOGICAL CHARACTERISTICS</th>
<th>MEASUREMENT</th>
<th>MM</th>
<th>NUMBER OF POINTS/WH (CM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIIC</td>
<td>Cattle</td>
<td>Digital bone III</td>
<td>GL</td>
<td>47</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Pig</td>
<td>Scapula</td>
<td>SLC</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radius</td>
<td>Bp</td>
<td>24, 25</td>
<td>10, 12</td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td>Talus</td>
<td>GLI-Bp</td>
<td>31-20</td>
<td>WH=70.3</td>
</tr>
<tr>
<td></td>
<td>Goat</td>
<td>Metacarpal bone</td>
<td>Bp</td>
<td>25</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Equid</td>
<td>Scapula</td>
<td>SLC</td>
<td>58</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radius</td>
<td>Bp</td>
<td>(72)</td>
<td>–</td>
</tr>
<tr>
<td>VIIC/VIIB</td>
<td>Pig</td>
<td>Scapula</td>
<td>SLC</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humerus</td>
<td>Bd-BT</td>
<td>34-29</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radius</td>
<td>Bp</td>
<td>24, 25</td>
<td>10, 12</td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td>Talus</td>
<td>GLI-Bp</td>
<td>32-20</td>
<td>WH=72.6</td>
</tr>
<tr>
<td></td>
<td>Goat</td>
<td>Horn core</td>
<td>Measurement of the basis</td>
<td>115</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radius</td>
<td>Bp</td>
<td>32, 35</td>
<td>–</td>
</tr>
<tr>
<td>VIIB</td>
<td>Cattle</td>
<td>Tibia</td>
<td>Bp</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digital bone I</td>
<td>GL-Bp-Bd-SD</td>
<td>54-28-25-25</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digital bone II</td>
<td>GL</td>
<td>40, 49</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Pig</td>
<td>Humerus</td>
<td>Bd-BT</td>
<td>30-29</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radius</td>
<td>Bp</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td>Talus</td>
<td>GLI-Bp</td>
<td>29-18</td>
<td>WH=66.0</td>
</tr>
<tr>
<td></td>
<td>Goat</td>
<td>Talus</td>
<td>GLI-Bp</td>
<td>30-22</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metatarsal bone</td>
<td>GL-Bp-Bd-SD</td>
<td>143-28-31-13/12</td>
<td>82/WH=76.4</td>
</tr>
<tr>
<td></td>
<td>Equid</td>
<td>Scapula</td>
<td>SLC</td>
<td>60</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pelvis</td>
<td>LA</td>
<td>65</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tibia</td>
<td>Bp</td>
<td>72</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 3. (continued)

<table>
<thead>
<tr>
<th>CHRONOLOGY</th>
<th>ZOOLOGICAL IDENTIFICATION</th>
<th>OSTEOLOGICAL CHARACTERISTICS</th>
<th>MEASUREMENT</th>
<th>MM</th>
<th>NUMBER OF POINTS/WH (CM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIIA</td>
<td>Cattle</td>
<td>Digital bone I</td>
<td>GL-Bp-Bd-SD</td>
<td>64-30-30-26</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Equid</td>
<td>Digital bone I</td>
<td>Bp</td>
<td>51</td>
<td>–</td>
</tr>
<tr>
<td>VIIA/VI</td>
<td>Pig</td>
<td>Calcaneus</td>
<td>GL</td>
<td>65</td>
<td>0/WH=60.7</td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td>Humerus</td>
<td>GL-GLC-Bp-Bd-SD</td>
<td>148-137-48-35-32-16/18</td>
<td>WH=63.3</td>
</tr>
<tr>
<td></td>
<td>Goat</td>
<td>Radius</td>
<td>GL-Bp-Bd-SD</td>
<td>166-34-31-17/10</td>
<td>WH=66.1</td>
</tr>
<tr>
<td></td>
<td>Pelvis</td>
<td>LA</td>
<td>27</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Cattle</td>
<td>Pelvis</td>
<td>LA</td>
<td>63</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Equid</td>
<td>Radius</td>
<td>Bd</td>
<td>71</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Digital bone II</td>
<td>GL-Bp-Bd-SD</td>
<td>50-52-48-44</td>
<td>40 (KP)</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Cattle</td>
<td>Talus</td>
<td>GLI-GLm-Bd</td>
<td>69-64-49, 57-25-21-22</td>
<td>58, 28</td>
</tr>
<tr>
<td></td>
<td>Digital bone II</td>
<td>GL</td>
<td>34</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pig</td>
<td>Radius</td>
<td>Bp</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td>Talus</td>
<td>GLI-Bp</td>
<td>29-21</td>
<td>WH=65.7</td>
</tr>
<tr>
<td></td>
<td>Equid</td>
<td>Scapula</td>
<td>SLC</td>
<td>98</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Metacarpal bone</td>
<td>GL-LI-Bp-Bd-SD</td>
<td>224-221-48-48-38/25, 217-212-47-33/25</td>
<td>46, 38/WH=143.6, 139.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Talus</td>
<td>GH-GB</td>
<td>59-63</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metatarsal bone</td>
<td>GL-Bp-Sd</td>
<td>250-45-31/28</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digital bone I</td>
<td>GL-Bp-Bd-SD</td>
<td>85-55-44-34</td>
<td>KP</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS

NINEVITE 5 (= VIIC)
Mammal bone fragments from Ninevite 5 period layers amounted to 534, supplemented with one bird bone fragment and 10 mollusk shell fragments. Of the mammal bones 311 fragments, accounting for 58.2% of the assemblage, were identified anatomically and by taxa. Most of the bones represent bred species, mostly sheep and goat (60.1%), followed by pig (36.7%) and cattle (3.2%). Three bone fragments belonged to equids.

An anatomical analysis attributed over half of the pig bone remains to head parts (54.9%), that is, to less prized parts of the carcass. Other body parts were represented by uniform percentages: from 4.4% for proximal parts of hind limbs to 9.7% for the trunk and proximal parts of forelimbs. Comparison with the model anatomical distribution of pig bone remains revealed a surplus of head parts. For sheep and goat, head parts (33.0%) and trunk parts (32.4%) prevailed, followed by proximal parts of fore- and hind limbs (12.4% and 11.9% respectively). Fewer distal parts of fore- and hind limbs, as well as digit bones were identified (less than 6% of the bone assemblage). Compared to the standard model for caprids there was a surplus of proximal parts of fore- and hind limbs.

Pigs slaughtered at a young age accounted for 17.7% of the studied sample. With regard to small ruminants the proportion of young animals reached 20.5%. Three of the pig bones were identified as coming from female individuals. Eight fragments of bones belonging to cattle, pig, sheep/goat and equids were measured. Three recalculated pig bone measurements gave 10, 12 and 20 points on a 100-point scale, indicating that the animals were domesticated and small-sized. Sheep withers height based on talus bone length was 70.3 cm. This individual would have been a large-sized sheep of urial-like type.

TRANSITIONAL NINEVITE 5/EDIII (= VIIC/VIIB)
330 bone remains of mammals and a mollusk fragment were recovered from transitional Ninevite 5/EDIII period layers. Of the mammal bones 152 fragments were identified anatomically and by taxa (46.1%). Most bones represented bred species, mostly sheep and goat (52.3%), followed by pig (43.0%) and cattle (4.6%). A deer metatarsal bone fragment was also identified.

Both for sheep/goat and for pig the percentage of animals slaughtered at a young age reached 13%. One fang of a female pig was identified. Also a fragment of a goat horn core belonging to a male individual was recorded. The results of pig bone measurements converted to points gave 10, 12, 18 and 20 points, meaning that the remains represented domesticated animals of small size. Converted goat horn core measurement corresponding to 16 points indicated a small goat. Sheep withers height was calculated at 72.6 cm based on the length of the talus bone.

EARLY DYNASTIC III (= VIIB)
Of the 486 mammal bone remains from EDIII layers 225 fragments were identified by taxa (46.3%). Domesticated animals prevailed, sheep and goat reaching 54.2% of the sample, followed by pig (33.5%) and cattle (12.3%). 13 bone remains belonged to equids.
Anatomical analysis of the sheep and goat bone remains revealed that head parts were the most common (45.2%), followed by more valuable carcass parts of the trunk (17.4%) and proximal parts of forelimbs (17.4%) and hind limbs (9.6%). Digital and metapodial bones were less numerous. Compared to the model anatomical distribution there was a surplus of head parts and proximal parts of fore- and hind limbs.

Young sheep and goat constituted 14.8% of the identified bone assemblage, whereas the percentage of young pigs reached 9.8%. Three fragments of cattle bones represented animals slaughtered at a young age. A fragment of cattle mandible with growing M2 belonged to an individual 15–18 months old at death. Bone remains with male or female distinguishing features were not recorded.

Two measurements of cattle bones could be converted to the point scale, giving results at 100 and 36 points. This represents cattle of the primigenius and brachyceros types respectively. Two measurements taken for pig bones suggest that pigs were domesticated and small-sized. Withers heights of sheep and goat reached 66.0 and 76.4 cm respectively, indicating that small sheep of the mouflon type and large goats were present at the site. Two values, 0 and 50 points, were obtained for equids, translating into withers heights for the animals of approximately 110 cm and 135 cm. Judging by withers height, the former could have been a donkey or onager and the latter (about 130 cm and more) a horse.

TRANQUSSINAL AKKADIAN/POST-AKKADIAN (= VIIA/VI)

195 bone fragments of mammals were recorded in transitional Akkadian/post-Akkadian period layers, along with one bird bone fragment and one mollusk fragment. 120 identified mammal bone fragments accounted for 61.5% of the assemblage. Most of the bones represented bred species: sheep and goat (80.7%), pig (17.6%) and cattle (1.7%). One bone fragment belonged to an equid.

Among the sheep and goat bone remains, 13.5% represented animals slaughtered at a young age. A fragment of a fang belonged to a male pig. Withers heights were calculated for pig, sheep and goat. The results: 60.7 cm for pig, 63.3 cm for sheep and 66.1 cm for goat, indicated that all the species were represented by small-sized animals.

KHAWEUAR (= V)

152 bone remains of mammals were found in Khabur Ware period layers, 98 fragments of which were identified (64.5%). Most of the bones represented bred species, mainly sheep and goat (82.7%), followed by cattle (9.9%) and pig (7.4%). 17 bone fragments belonged to equids. Single bone fragments belonged to cattle, as well as sheep and goat slaughtered at a young age. A fragment of a horn core came from a female sheep.

Two values on the point scale for cattle and one for equids, all calculated as 40 points, indicate a withers heights of approximately 130 cm. In the case of the equid, it could have been a small or medium-sized horse.

MODERN LAYERS (= M)

Of the 280 bone remains of mammals from modern layers, 138 fragments were identified by taxa (49.3%). They represented bred species: sheep and goat constituting 70.2% of the assemblage, followed by cattle.
(21.4%) and pig (8.3%). 53 bone remains belonged to equids and one to camel.

Among the equid bone remains 10 represented animals slaughtered at a young age. The age at death of one individual was estimated at between five and seven years. Single identifiable bone remains of cattle, sheep and goat also represented young animals.

Measurement of 11 bone fragments of animals of various species (mainly equids) resulted in withers height calculated at 139 cm and 143.5 cm; a third measurement of an equid converted to points suggested a small-sized animal with a withers height no larger than 130 cm. These bone remains belonged most probably to horses. Two measurements for cattle, 28 and 58 points, pointed to the *Bos taurus brachyceros* type.

The width of the proximal part of a pig’s radius bone, corresponding to 10 points, suggested a domesticated animal of small size. Withers height of sheep calculated as 65.7 cm based on the length of a talus bone pointed to a mouflon-like type.

MARKS ON ANIMAL BONES

Some marks related to meat processing were observed on bones from different-period assemblages. Traces of charring and blackening were the most numerous, occurring on anatomically varied bone remains of animals representing bred species. Marks of this kind show that meat was roasted while still on the bone. Boiling meat (and bones) was less common, as indicated by a lower number of bones with grayish and porous surface.

INTERPRETATION

Archaeozoological analysis of bone remains from the excavations in 2009 at Tell Arbid demonstrated animal husbandry to have been at the core of the animal economy on the site from the beginning of the 3rd millennium BC through modern times. Hunting wild animals was of no significance. Except for a single metatarsal bone of deer obtained from EDIII/Ninevite 5 period layers, no other wild animal bones were identified. Mollusks played a minor role. The Ninevite 5 period layers produced the most shells with single examples being recorded from transitional Ninevite 5/EDIII and Akkadian/post-Akkadian phases. It cannot be determined whether mollusks were locally available or imported from elsewhere as their detailed identification was not possible. Had they been gathered in the close vicinity of the site, they could have been used for feeding pigs — pig bone remains were commonly represented in the assemblage.

Two species of small ruminants, goat and sheep, played the main role in the settlement’s animal economy, exceeding 50% of the bone remains in each period. Their importance increased over time, growing from approximately 50% in the earlier periods (Ninevite 5 and EDIII) to 80% by the end of the 3rd millennium BC (transitional Akkadian/post-Akkadian period), as well as in later periods (Khabur Ware and modern periods). This suggests a change in the animal economy in the end of the 3rd millennium BC. From this period on, there was a shift from a stationary economy based mainly on pig breeding and aimed at a quick acquisition of meat to a pastoral economy, which focused on small ruminants and equids. This change can be explained in terms of more arid
conditions in the region (Bryson, Bryson 1997).

In the earlier periods, goat and sheep raised at Tell Arbid provided mostly meat, as indicated by the young age at death of the animals (approximately 15%). Data available for late periods were insufficient. Morphological analysis proved that both small and large types were attested among sheep and goats. With regard to goats, small-sized animals were present in transitional Ninevite 5/EDIII, Akkadian/post-Akkadian period layers, whereas goats of a large size were attested in EDIII period layers. Large-sized sheep of an urial-like type with a withers height of over 70 cm were present in Ninevite 5 and transitional Ninevite 5/EDIII period layers. The existence of small individuals of a mouflon type with a withers height under 70 cm was confirmed in the EDIII, Akkadian and post-Akkadian periods, as well as in modern layers. A small variety of sheep was common in the ancient Near East (Lasota-Moskalewska et alii 1998). The large variety was distributed over an area stretching from Iran to Kashmir. Large-sized sheep at Tell Arbid could have been brought from the east or it could have been the result of cross-breeding between domesticated sheep and wild species of the urial type.

Raising pigs supplemented small ruminants breeding in the animal economy on Tell Arbid. The percentage of pig bone remains reached 35% in the Early Bronze Age (Ninevite 5, EDIII, Akkadian/post-Akkadian periods) and fell to 10% in the Middle Bronze Age (Khabur Wāre period). The presence of some pig bone remains in the modern period can be explained by residuality of the archaeological material or by the fact that pig meat was still being consumed sporadically.

In the Ninevite 5 and EDIII phases pigs were raised for a relatively long time. The percentage of slaughtered young pigs in these periods reached 13% and was lower than the average value for most sites which is 30%. This implies that pigs were being raised for fat and not just meat. Morphological analysis indicates that in all periods pig was represented by a domesticated type of small size with withers height of 60 cm. No transitional types or hybrids of pig and boar were attested in the bone assemblage. Indirectly, this can suggest that pigs were raised in closed areas.

Regardless of the chronological period, cattle was of little importance in the animal economy at Tell Arbid. Even so, the percentage of cattle bone remains gradually increased over time, ranging from 5% in the 3rd millennium BC through 10% in the Khabur Wāre period to over 20% in modern times. As sex and age could not be estimated from the remains, the issue of whether cattle were raised for meat or for secondary products could not be settled. A morphological analysis of cattle bone remains from the EDIII period and modern layers demonstrated that there were two varieties, *Bos taurus brachyceros* and *Bos taurus primigenius*, in the earlier period, but only the former survived into the modern age. Small-sized individuals predominated, their withers height ranging from 110 cm to 130 cm. The presence of large-sized cattle at Tell Arbid can be explained by crossbreeding with the auroch, but also by the possibility of cattle of this kind being brought in from more remote areas. The paucity of measurable bones of these animals precludes a decisive interpretation of this issue.

The analysis of the distribution of bone parts of sheep, goat and pig
from Ninevite 5 and EDIII periods suggests that the slaughter, carving, and consumption of animals took place within the boundaries of the settlement. This has been suggested by the presence of all of the elements of the skeleton, including digital bones, which usually remain at the place of carving. Surpluses of skull bones were observed in the case of pig bone remains from Ninevite 5 period layers and of sheep and goat bone remains from the EDIII period. The significant quantity of skulls indicates a predilection for meat from the head, while the high number of head bones could be explained by their strong fragmentation. Next in terms of quantity were the trunk and proximal parts of fore- and hind limbs, which were prized parts of the carcass. Surpluses of proximal parts of sheep and goat fore- and hind limbs were recorded in Ninevite 5 and EDIII layers. They can be explained by the custom of chopping these prized parts of the carcass into smaller pieces that were subsequently subjected to thermal processing.

Bone remains of equids were found in the post-consumption deposits in all periods, except for the transitional Ninevite 5/EDIII. Their number increased regularly over time, peaking in assemblages from the modern layers. The category could have comprised onagers, horses and donkeys. However, it is impossible to determine whether they were wild, tamed or domesticated. A morphological analysis of the remains demonstrated the presence of animals of various size. In the EDIII and Khabur Ware phases, individuals with a height of 130 cm in the withers were attested. A smaller size of animals, 110 cm high in the withers, was also observed among the remains from the EDIII period. Modern layers yielded remains of larger-sized equids, with a height in the withers of approximately 140 cm, along with smaller-sized individuals. The larger equids could have been small and middle-sized horses, and those of a smaller size donkeys and onagers.

CONCLUSIONS

The results of the analysis of animal bone remains from excavations carried out in 2009 in Sector W on Tell Arbid suggest that sheep and goat husbandry played a major role in the animal economy at Tell Arbid. These results are generally in accordance with previous studies on animal remains from Tell Arbid. The results of the 2009 season support the view that sheep and goat were the main source of meat for the inhabitants of the settlement; this was supplemented with pork and beef. The dominance of small ruminants at Tell Arbid tallies with a pastoral economy practiced throughout the Near East. Sheep and goats are well-adjusted to seasonal wandering and their dietary requirements are rather low. The high percentage of pig bone remains in the earlier phases of occupation on the site can be explained by an increased consumption demand for meat — compared to other animals pigs are much more abundant providers in this respect. Moreover, the species is omnivorous and easy to breed close to a settlement. A marked increase in the importance of caprines and a concomitant decline in pig numbers can be observed in the transitional Akkadian/post-Akkadian and Khabur Ware periods, that is in the end of the 3rd millennium BC and the first centuries of the 2nd millennium BC.
Animal bone remains from Tell Arbid (season 2009) — archæozoological analysis

REFERENCES

Bieliński, P.
2010 Tell Arbid. Preliminary report on the results of the twelfth season of Syrian–Polish excavations, PAM 19 (Reports 2007), 537–554
2013 Preliminary results of the fifteenth field season of joint Polish–Syrian explorations on Tell Arbid (2010), PAM 22 (Research 2010), 351–370

Bryson, R.A., Bryson, R.U.

(von den) Driesch, A.

(von den) Driesch, A., Boessneck, J.
1974 Kritische Anmerkungen zur Widerristhöhenberechnung aus Längenmassen vor- und frühgeschichtlicher Tierknochen, Säugetierkundliche Mitteilungen 22, 325–348

Kobryń, H.
1989 Zastosowanie metody punktowej w badaniach wykopaliskowych szczątków kostnych konia (Equus Przewalski f. Caballus), Archeologia Polski 34/1, 7–12

Kolda, J.
1936 Srovnávací anatomie zvířat domácích se zřetelem k anatomii člověka, Brno: J. Kolda

Lasota-Moskalewska, A.
1980 Morphotic changes of domestic cattle skeleton from the Neolithic Age to the beginning of the Iron Age, Wiadomości Archeologiczne 45/2 (1980), 119–163

Lasota-Moskalewska, A., Kobryń, H., Świeżyński, K.
1987 Changes in the size of the domestic and wild pig in the territory of Poland from the Neolithic to the Middle Ages, Acta Theriologica 32/5, 51–81
1998 The size of domestic sheep (Ovis aries L.) in Europe and Asia from the Neolithic to the Middle Ages, Światowit 41, Fasc. B, 323–348

Lutnicki, W.
1972 Użębieńie zwierząt domowych, Kraków: Państwowe Wydawnictwo Naukowe
Piątkowska-Malecka, J., Koliński, R.

Piątkowska-Malecka, J., Smogorzewska, A.

Schramm, Z.
1967 Kości długie a wysokość w klębie u kozy, *Roczniki Wyższej Szkoły Rolniczej w Poznaniu* 36, 89–105
POLISH CENTRE OF MEDITERRANEAN ARCHAEOLOGY
UNIVERSITY OF WARSAW

POLISH ARCHAEOLOGY
IN THE MEDITERRANEAN

XXII
RESEARCH 2010
CONTENTS

Acknowledgments ... 10

Obituaries
 Michał Neska .. 11
 Piotr Parandowski .. 13
 Adam Stefanowicz ... 15
 Zygmunt Wysocki .. 17

Abbreviations and standard references ... 19

PAM REPORTS

PCMA field missions and projects in 2010 (with map) .. 23

EGYPT

ALEXANDRIA
 Excavations and preservation work on Kom el-Dikka.
 Preliminary report 2009/2010
 Grzegorz Majcherek ... 33

MAREA
 Eleventh season of excavations at Marea (2010)
 Krzysztof Babraj, Hanna Szymańska, Anna Drzymuchowska, Nina Willburger … 55
 Appendix: The harbor jetties of Marea
 Krzysztof Babraj .. 67

TELL EL-RETABA
 Tell el-Retaba, season 2010
 Sławomir Rzepka, Jozef Hudec, Łukasz Jarmużek ... 79
 Appendix: Tell el-Retaba 2010. Preliminary report on archaeobotanical investigations
 Claire Malleson ... 90
 Tell el-Retaba, season 2010: Pottery report
 Anna Wodzińska ... 96
TELL EL-MURRA

Tell el-Murra (Northeastern Nile Delta Survey). Season 2010
Mariusz A. Jucha, Katarzyna Blaszczyk, Artur Buszek, Grzegorz Pryc 105

TELL EL-GHABA

Geophysical survey at Tell el-Ghaba, 2010
Tomasz Herbich ... 121

DEIR EL-BAHARI

Zbigniew E. Szafranski .. 131

New stone sculptures of Hatshepsut from Deir el-Bahari
Aliaksei Shukanau ... 152

VALLEY OF THE KINGS

Polish Epigraphical Mission in the Tomb of Rameses VI (KV 9)
in the Valley of the Kings in 2010
Adam Lukaszewicz ... 161

Appendix: Three-dimensional spatial information system for the graffiti
inside the Tomb of Rameses VI (KV 9) in the Valley of the Kings
Wieslaw Malkowski, Miron Bogacki ... 165

SHEIKH ABD EL-GURNA

The hermitage in Sheikh Abd el-Gurna (West Thebes): excavations,
studies and conservation in 2009 and 2010/2011
Tomasz Górecki .. 171

Preliminary Remarks on the Architecture of Theban Tomb 1152
at Sheikh Abd el-Gurna
Patryk Chudzik .. 193

The Gurna Manuscripts (hermitage in MMA 1152),
conservation report, 2010
Anna Thommée ... 199

BERENIKE

The late Roman harbor temple of Berenike. Results of the 2010 season
of excavations
Joanna Rądkowska, Steven E. Sidebotham, Iwona Zych 209

SUDAN

DONGOLA

Archaeozoological research on animal remains from excavations in
Dongola (Sudan) in 2010
Marta Osypińska ... 229
CONTENTS

The Mosque Building in Old Dongola. Conservation and Revitalization Project
Artur Oblusi, Włodzimierz Godlewski, Wojciech Kołtaj, Stanisław Medeksza, Cristobal Calaforra-Rzepka ... 248

BANGANARTI

Banganarti and Selib. Season 2010
Bogdan Żurawski, Tomasz Stepnik, Mariusz Drzewiecki, Tadeusz Badowski, Aneta Cedro, Katarzyna Molga, Katarzyna Solarska, Tomasz Włodarski 273

Appendix: Archaeological research report from Selib 2 (2010 season)
Roksana Hajduga ... 287

The enclosure walls of Banganarti and Selib after the 2010 season
Mariusz Drzewiecki ... 295

FOURTH CATARACT

Hagar el-Beida 1. Excavations of the “royal” tumulus (No. 10) in 2010
Marek Chłodnicki, Tomasz Stepnik ... 309

LEBANON

JIYEH

Preliminary report on the 2010 excavation season at Jiyeh (Porphyreon)
Tomasz Waliszewski, Mariusz Gwiazda ... 321

Fishing gear from Jiyeh (Porphyreon). Preliminary report
Agnieszka Szulc-Kajak ... 334

SYRIA

PALMYRA

Remarks on water supply in Palmyra. Results of a survey in 2010
Karol Juchniewicz, Marta Żuchowska ... 341

TELL ARBID

Preliminary results of the fifteenth field season of joint Polish–Syrian explorations on Tell Arbid (2010)
Piotr Bieliński ... 351

Ninevite 5 kitchen from Tell Arbid (Sector W)
Andrzej Reiche, Anna Smogorzewska ... 371

Set of second millennium BC unbaked clay objects from Tell Arbid
Agnieszka Szymczak ... 387

Decorative motifs on Early Incised/Excised Ninevite 5 pottery from Tell Arbid
Cezary Baka, Jacek Hamburg ... 421
Animal bone remains from Tell Arbid (season 2009) — Archaeozoological analysis
Joanna Piątkowska-Małecka, Anna Smogorzewska ... 439

Tell Arbid. Adam Mickiewicz University excavations in Sector P (spring season of 2010)
Rafał Koliński .. 451

KUWAIT

AS-SABBIYA

Archaeological survey in the eastern As-Sabbiya (north coast of Kuwait Bay), seasons 2009–2010
Łukasz Rutkowski .. 479

Tumuli graves and desert wells in the As-Sabbiya. Preliminary excavation report on the spring season in 2010
Łukasz Rutkowski .. 493

Tumulus grave SMQ 49 (As-Sabbiya, Kuwait). Preliminary report on the investigations in 2009–2010
Maciej Makowski .. 518

Andrzej Reiche .. 528

IRAN

KHONE-YE DIV

Barbara Kaim, Mohammad Bakhtiar, Hassan Hashemi ... 543

PAM STUDIES

Pottery from Bahra 1 (Kuwait). New evidence for the presence of Ubaid culture in the Gulf
Anna Smogorzewska ... 555

Ground and pecked stone industry of Bahra 1, an Ubaid-related settlement in Northern Kuwait
Marcin Białowarczuk ... 569

Shell objects from Tell Rad Shaqrah (Syria)
Dariusz Szegł .. 587
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropomorphic figurines of the second millennium BC from Tell Arbid, preliminary report</td>
<td>617</td>
</tr>
<tr>
<td>Maciej Makowski</td>
<td></td>
</tr>
<tr>
<td>Execration again? Remarks on an Old Kingdom ritual</td>
<td>627</td>
</tr>
<tr>
<td>Teodozia I. Rzeuska</td>
<td></td>
</tr>
<tr>
<td>The Solar Altar in the Hatshepsut temple at Deir el-Bahari</td>
<td>635</td>
</tr>
<tr>
<td>Teresa Dziedzic</td>
<td></td>
</tr>
<tr>
<td>Roman clay lantern from Bijan Island (Iraq)</td>
<td>651</td>
</tr>
<tr>
<td>Maria Krogulska, Iwona Zych</td>
<td></td>
</tr>
<tr>
<td>Archbishop Georgios of Dongola. Socio-political change in the kingdom of Makuria in the second half of the 11th century</td>
<td>663</td>
</tr>
<tr>
<td>Włodzimierz Godlewski</td>
<td></td>
</tr>
<tr>
<td>Medieval transcultural medium; beads and pendants from Makurian and post-Makurian Dongola in Nubia</td>
<td>679</td>
</tr>
<tr>
<td>Joanna Then-Obłuska</td>
<td></td>
</tr>
<tr>
<td>Index of sites</td>
<td>721</td>
</tr>
<tr>
<td>Guidelines for authors</td>
<td>722</td>
</tr>
<tr>
<td>PCMA Publications</td>
<td>723</td>
</tr>
</tbody>
</table>